Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27431, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509897

RESUMO

"Intensification of Vaporization by Decompression to the Vacuum" (IVDV) has initially emerged as a technology primarily employed for expanding and enhancing the texture of biological products. However, its recent applications have showcased significant promise in the realm of extracting bioactive molecules from various plant materials. In this context, optimization using response surface methodology was conducted to investigate the impact of IVDV pretreatment on the extractability of phenolic compounds from Eryngium creticum leaves and stems, as well as their biological activities. Using IVDV preceding the extraction led to higher total phenolic content (TPC) and enhanced antiradical activities in treated materials compared to untreated ones. The optimal processing conditions in terms of water content, steam pressure and treatment time were determined in order to maximize TPC (89.07 and 20.06 mg GAE/g DM in leaves and stems, respectively) and antiradical (DPPH) inhibition percentage (93.51% and 27.54% in leaves and stems, respectively). IVDV-treated extracts showed superior antioxidant, antibacterial and antibiofilm capacities compared to raw extracts. Using RP-UHPLC-PDA-MS, caffeic acid and rosmarinic acid were identified in IVDV-treated leaves. IVDV can be implemented as an innovative treatment applied prior to extraction to boost the recovery of biomolecules from plant matrices.

2.
Life (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374071

RESUMO

Extraction of polyphenols from Centranthus longiflorus stems was conducted using ultrasound and infrared Ired-Irrad® techniques, and compared to the conventional water bath method. Response surface methodology was used to analyse the effect of time, temperature, and ethanol percentage, as well as to optimize the three extraction methods. The highest phenolic content (81 mg GAE/g DM) and antioxidant activity (76% DPPH inhibition) were recorded with the Ired-Irrad® extract obtained under the optimal conditions: 55 °C, 127 min, 48% (v/v) ethanol. Biological activities (antioxidant, antibacterial and antibiofilm) of the three extracts were assessed. All C. longiflorus stems extracts showed limited antibacterial effects regardless of the extraction method (MIC = 50 mg/mL), whereas Ired-Irrad® extract exhibited the highest biofilm eradication and prevention capacities (93% against Escherichia coli and 97% against Staphylococcus epidermidis, respectively). This bioactivity is likely related to abundant caffeoylquinic acid and quercetin rutinoside, as identified by RP-UHPLC-PDA-MS analysis. The results obtained further promote the effectiveness of Ired-Irrad® as a highly flexible and cost-efficient extraction technique.

3.
Plants (Basel) ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235324

RESUMO

(1) Background: Eryngium creticum is a plant medicinally valued, and used in pharmacopeia to treat various diseases. No previous studies have been reported on E. creticum leaf extracts using an IR-assisted technique; thus, this study aimed to intensify polyphenol extraction using Ired-Irrad®, comparing it to the conventional water bath (WB) method. (2) Methods: Optimization of polyphenol extraction from E. creticum leaves was conducted using Response Surface Methodology. Ired-Irrad® was used and compared to the WB method. The biological activities (antiradical, antioxidant, antibacterial, and antibiofilm) of both extracts were assessed. UHPLC analysis was performed to analyze the phytochemical profile of both extracts. (3) Results: Under optimal conditions, IR improved the polyphenol extraction yield by 1.7 times, while lowering ethanol consumption by 1.5 times. Regarding the antibacterial activity, both WB and IR E. creticum leaf extracts exhibited the highest antibacterial activity against Staphylococcus epidermidis. The maximum biofilm prevention capacity was also noticed against S. epidermidis. UHPLC-MS analysis quantified two major phenolic compounds in both extracts: rutin and sinapic acid. (4) Conclusions: Ired-Irrad® technology proved to be an effective technique in intensifying polyphenol recovery, while preserving their quantity and quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...